Homework 7 Solution

$$
\text { P } 7.14 \quad t<0 \text { : }
$$

$$
R_{e}=\frac{(10)(40)}{50}+10=18 \Omega
$$

$$
\tau=\frac{L}{R_{e}}=\frac{0.072}{18}=4 \mathrm{~ms} ; \quad \frac{1}{\tau}=250
$$

$$
\therefore \quad i_{L}=8 e^{-250 t} \mathrm{~A}
$$

$$
\therefore v_{o}=-10 i_{L}-0.072 \frac{d i_{L}}{d t}=-80 e^{-250 t}+144 e^{-250 t}
$$

$$
=64 e^{-250 t} \mathrm{~A} \quad t \geq 0^{+}
$$

[a] $v_{1}\left(0^{-}\right)=v_{1}\left(0^{+}\right)=40 \mathrm{~V} \quad v_{2}\left(0^{+}\right)=0$

$$
C_{\mathrm{eq}}=(1)(4) / 5=0.8 \mu \mathrm{~F}
$$

$$
\begin{aligned}
& \tau=\left(25 \times 10^{3}\right)\left(0.8 \times 10^{-6}\right)=20 \mathrm{~ms} ; \quad \frac{1}{\tau}=50 \\
& i=\frac{40}{25,000} e^{-50 t}=1.6 e^{-50 t} \mathrm{~mA}, \quad t \geq 0^{+}
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=\frac{-1}{10^{-6}} \int_{0}^{t} 1.6 \times 10^{-3} e^{-50 x} d x+40=32 e^{-50 t}+8 \mathrm{~V}, \quad t \geq 0 \\
& v_{2}=\frac{1}{4 \times 10^{-6}} \int_{0}^{t} 1.6 \times 10^{-3} e^{-50 x} d x+0=-8 e^{-50 t}+8 \mathrm{~V}, \quad t \geq 0
\end{aligned}
$$

[b] $w(0)=\frac{1}{2}\left(10^{-6}\right)(40)^{2}=800 \mu \mathrm{~J}$
[c] $w_{\text {trapped }}=\frac{1}{2}\left(10^{-6}\right)(8)^{2}+\frac{1}{2}\left(4 \times 10^{-6}\right)(8)^{2}=160 \mu \mathrm{~J}$.
The energy dissipated by the $25 \mathrm{k} \Omega$ resistor is equal to the energy dissipated by the two capacitors; it is easier to calculate the energy dissipated by the capacitors (final voltage on the equivalent capacitor is zero):

$$
w_{\text {diss }}=\frac{1}{2}\left(0.8 \times 10^{-6}\right)(40)^{2}=640 \mu \mathrm{~J}
$$

Check: $\quad w_{\text {trapped }}+w_{\text {diss }}=160+640=800 \mu \mathrm{~J} ; \quad w(0)=800 \mu \mathrm{~J}$.

P 7.30
[a] $C_{e}=\frac{(2+1) 6}{2+1+6}=2 \mu \mathrm{~F}$

$$
\begin{aligned}
& v_{o}(0)=-5+30=25 \mathrm{~V} \\
& \tau=\left(2 \times 10^{-6}\right)\left(250 \times 10^{3}\right)=0.5 \mathrm{~s} ; \quad \frac{1}{\tau}=2 \\
& +\overbrace{2}^{2 \mu \mathrm{~F}} \mathrm{C}_{2}^{2}=250 \mathrm{k} \Omega \\
& v_{0}=25 e^{-2 t} \mathrm{~V}, \quad t>0^{+}
\end{aligned}
$$

[b] $w_{o}=\frac{1}{2}\left(3 \times 10^{-6}\right)(30)^{2}+\frac{1}{2}\left(6 \times 10^{-6}\right)(5)^{2}=1425 \mu \mathrm{~J}$

$$
\begin{aligned}
& w_{\text {diss }}=\frac{1}{2}\left(2 \times 10^{-6}\right)(25)^{2}=625 \mu \mathrm{~J} \\
& \% \text { diss }=\frac{1425-625}{1425} \times 100=56.14 \%
\end{aligned}
$$

[c] $i_{o}=\frac{v_{o}}{250 \times 10^{-3}}=100 e^{-2 t} \mu \mathrm{~A}$

$$
\begin{aligned}
v_{1} & =-\frac{1}{6 \times 10^{-6}} \int_{0}^{t} 100 \times 10^{-6} e^{-2 x} d x-5=-16.67 \int_{0}^{t} e^{-2 x} d x-5 \\
& =-\left.16.67 \frac{e^{-2 x}}{-2}\right|_{0} ^{t}-5=8.33 e^{-2 t}-13.33 \mathrm{~V} \quad t \geq 0
\end{aligned}
$$

[d] $v_{1}+v_{2}=v_{0}$

$$
v_{2}=v_{o}-v_{1}=25 e^{-2 t}-8.33 e^{-2 t}+13.33=16.67 e^{-2 t}+13.33 \mathrm{~V} \quad t \geq 0
$$

[e] $w_{\text {trapped }}=\frac{1}{2}\left(6 \times 10^{-6}\right)(13.33)^{2}+\frac{1}{2}\left(3 \times 10^{-6}\right)(13.33)^{2}=800 \mu \mathrm{~J}$

$$
w_{\text {diss }}+w_{\text {trapped }}=625+800=1425 \mu \mathrm{~J}
$$

P 7.36

$$
\begin{aligned}
& \text { [a] } v_{o}\left(0^{+}\right)=-I_{g} R_{2} ; \quad \tau=\frac{L}{R_{1}+R_{2}} \\
& v_{o}(\infty)=0 \\
& v_{o}(t)=-I_{g} R_{2} e^{-\left[\left(R_{1}+R_{2}\right) / L\right) t} \mathrm{~V}, \quad t \geq 0^{+}
\end{aligned}
$$

[b] $v_{o}=-(10)(15) e^{-\frac{(5+15)}{0.016} t}=-150 e^{-1250 t} \mathrm{~V}, \quad t \geq 0^{+}$
[c] $v_{o}\left(0^{+}\right) \rightarrow \infty$, and the duration of $v_{o}(t) \rightarrow$ zero
[d] $v_{s w}=R_{2} i_{o} ; \quad \tau=\frac{L}{R_{1}+R_{2}}$

$$
i_{o}\left(0^{+}\right)=I_{g} ; \quad i_{o}(\infty)=I_{g} \frac{R_{1}}{R_{1}+R_{2}}
$$

Therefore $\quad i_{o}(t)=\frac{I_{g} R_{1}}{R_{1}+R_{2}}+\left[I_{g}-\frac{I_{g} R_{1}}{R_{1}+R_{2}}\right] e^{-\left\{\left(R_{1}+R_{2}\right) / L\right] t}$

$$
i_{o}(t)=\frac{R_{1} I_{o}}{\left(R_{1}+R_{2}\right)}+\frac{R_{2} I_{o}}{\left(R_{1}+R_{2}\right)} e^{-\left[\left(R_{1}+R_{2}\right) / L \mid t\right.}
$$

Therefore $\quad v_{s w}=\frac{R_{1} I_{g}}{\left(1+R_{1} / R_{2}\right)}+\frac{R_{2} I_{g}}{\left(1+R_{1} / R_{2}\right)} e^{-\left[\left(R_{1}+R_{2}\right) / L\right] t}, \quad t \geq 0^{+}$
[e] $\left|v_{s w}\left(0^{+}\right)\right| \rightarrow \infty ; \quad$ duration $\rightarrow 0$

P 7.44 [a] $t<0$

$$
\begin{aligned}
& t>0 \\
& i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=25 \mathrm{~mA} ; \quad \tau=\frac{24 \times 10^{-3}}{120}=0.2 \mathrm{~ms} ; \quad \frac{1}{\tau}=5000 \\
& i_{L}(\infty)=-50 \mathrm{~mA} \\
& i_{L}=-50+(25+50) e^{-5000 t}=-50+75 e^{-5000 t} \mathrm{~mA}, \quad t \geq 0 \\
& v_{o}=-120\left[75 \times 10^{-3} e^{-5000 t}\right]=-9 e^{-5000 t} \mathrm{~V}, \quad t \geq 0^{+}
\end{aligned}
$$

[b] $i_{1}=\frac{1}{60 \times 10^{-3}} \int_{0}^{t}-9 e^{-5000 x} d x+10 \times 10^{-3}=\left(30 e^{-5000 t}-20\right) \mathrm{mA}, \quad t \geq 0$
[c] $i_{2}=\frac{1}{40 \times 10^{-3}} \int_{0}^{t}-9 e^{-5000 x} d x+15 \times 10^{-3}=\left(45 e^{-5000 t}-30\right) \mathrm{mA}, \quad t \geq 0$

